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Disorder by Random Crosslinking in Smectic Elastomers
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We present a high-resolution x-ray study of the effects of disorder due to random crosslinking on the
one-dimensional translational ordering in smectic elastomers. At a small crosslink density of about 5%,
the elastomer network stabilizes the smectic structure against layer-displacement fluctuations, and the
algebraically decaying layer ordering extends up to several micrometers. With increasing concentration
of crosslinks, the finite size of these domains is strongly reduced, indicating that disordering takes over.
Finally, at a crosslink concentration of 20%, the structure factor can be described by a Lorentzian,
which signals extended short-range correlations. The findings are discussed in terms of recent theories
of randomly quenched disorder.
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FIG. 1. (a) Schematic picture of smectic elastomers.
(b) Chemical structures. Elastomer type I has X � Y � R1;
type II has X � R1 (45%) and Y � R2 (55%).
The effects of disorder by a random field on the prop-
erties of condensed matter systems constitute a source of
challenging problems [1]. Usually quenched disorder is
considered in which the source of the distortion is fixed in
space and time. Examples include systems as different as
the pinning of an Abrikosov flux vortex lattice by impu-
rities in superconductors, disordered Ising magnets, su-
perfluid transitions in helium, and phase transitions in
smectic liquid crystals. Regarding the first example, a
pioneering paper by Larkin [2] predicted that at large
enough length scales, even weak disorder destroys trans-
lational order below four dimensions, resulting in expo-
nentially decaying positional correlations. Later work
recognized that the effect of the disorder was over-
estimated and that quasi-long-range order can survive
(positional correlations decaying algebraically at large
distances) [3]. This latter property is similar to the be-
havior of solids in two dimensions (2D), as well as of the
layer correlations in smectic liquid crystals (LC).
Monomer and polymer smectic LC phases consist of
stacks of liquid layers in which thermally excited fluctu-
ations cause the mean-squared layer displacements to
diverge logarithmically with the system size (Landau-
Peierls instability) [4]. As a result, the positional corre-
lations decay algebraically and the discrete Bragg peaks
change into Caillé line shapes with an asymptotic power-
law form [5]. For monomeric smectic systems, disorder
has been introduced by confinement in aerogels or alter-
natively by dispersion of hydrophilic aerosil. Already at
small densities of the aerogels or aerosils (�2%), the 1D
smectic ordering is destroyed and persists only locally on
a length scale of the order of 100 nm [6,7]. This agrees
with the theoretical prediction that any quenched disorder
should do so, no matter how weak [8]. In this Letter we
discuss smectic elastomers in which disorder can be in-
troduced by a random network of crosslinks.
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One way to combine LC ordering with polymer prop-
erties is to attach mesogenic molecules to a polymer
backbone via flexible linkages. The backbone polymer,
in turn, can be weakly crosslinked to form an elastomer.
The macroscopic rubber elasticity introduced via such a
percolating network interacts with the LC ordering field
[9]. In nematic elastomers, orientational transitions
driven by the soft rubber elasticity lead to novel forms
of mechanical instabilities and orientational memory
effects [10]. In smectic LC elastomers [see Fig. 1(a)], the
layers cannot move easily across the crosslinking points
where the polymer backbone is attached. Consequently,
layer-displacement fluctuations are suppressed, which
stabilizes the 1D periodic layer structure [11,12]. In
agreement with these predictions, this has been observed
to restore true long-range ordering [13]. On the other
hand, the crosslinks can provide a random network of
2004 The American Physical Society 185702-1
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FIG. 2. X-ray line shape of elastomer II; the dashed line gives
the direct beam. (a) Three orders of diffraction peaks for
crosslinks density x � 0:1. (b) First-order peak for x � 0:1,
0.15, and 0.2, respectively.
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defects that could destroy the smectic ordering. In this
Letter, we report measurements demonstrating both ten-
dencies. Upon increasing the crosslink density, after an
initial small decrease (ordering), the width of the quasi-
Bragg peak corresponding to the layer structure strongly
increases (disordering). Finally, at about 20% crosslinks,
extended short-range order develops as evidenced by a
Lorentzian line shape.

Smectic-A (Sm-A) polysiloxanes [Fig. 1(b)] were syn-
thesized as described earlier [14]. The average degree of
polymerization is about 250 with a broad distribution
typical of a polycondensation reaction. Both types of
elastomer contain as mesogenic groups benzoic acid phe-
nylesters (R1; R2) and a bifunctional hydroquinone de-
rivative (R3) as the crosslinking agent. Type II differs
from type I by the presence of a second mesogenic group
(R2). The elastomers/polymers were studied in the Sm-A
phase at room temperature. The Sm-A phase was identi-
fied through sharp (00n) quasi-Bragg peaks along the
layer normal at a wave vector qn, and a broad liquidlike
peak from the in-plane short-range order. Aligned elas-
tomer samples (typically 40� 10 mm2 and 0.5 mm thick)
were obtained by a two-stage process. During a first
crosslinking step, the networks were isotropic while sol-
vent was still present. The solvent was slowly removed at
room temperature under a uniaxial load. During this
process the isotropic sample passed through a nematic
phase, and subsequently became smectic. In the nematic
phase, the director oriented in the direction of the uni-
axial stress. This determined the long direction of the
sample (coinciding with the smectic layer normal) and
was fixed by a second crosslinking step. Homopolymer
films were prepared at temperatures close to the smectic-
isotropic transition (65–75 �C) by moving a spreader over
a glass substrate to give films with a thickness of about
100 �m and a mosaic distribution of the layer normals
&1:5 �.

The experiments were performed at the Exxon beam
line X10A at the National Synchrotron Light Source,
Brookhaven National Laboratory (Upton, NY, USA)
with 8 keV radiation (wavelength 
 � 0:155 nm). The
wave vector transfer is given by q � kf � ki, where kf

and ki are the outgoing and incoming wave vector, re-
spectively, with q � jqj � �4�=
� sin�, 2� being the
scattering angle. The scattering plane (z; x plane) was
vertical with the qz axis parallel to the smectic layer
normal. Hence the quasi-Bragg peaks were measured
along qz while the mosaic distribution was determined
by transverse (rocking) curves varying qx at different
qz � qn. The resolution function in the scattering plane
was close to a Gaussian with �qz � 0:003 nm�1 (full-
width-at-half-maximum, FWHM). Using a double-
bounce Ge(111) monochromator and a triple-reflection
channel-cut Ge(220) or Si(111) analyzer crystal, the
wings were reduced to ��qz � qn�

�4:5 at small deviations
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from the Bragg position, and to ��qz � qn�
�3 further

away. The resolution function along qx could be taken
as a � function. Out of the scattering plane, the resolution
was set by slits to �qy � 0:02 nm�1. The incident inten-
sity was about 5� 109 cts=s; the beam size was 0:5�
1 mm2 (V �H). All data were normalized, resolution
corrected, and background subtracted.

We studied elastomer I for volume fractions of cross-
links x � 0 (homopolymer) and x � 0:05, and elastomer
II for crosslink fractions x � 0, 0.1, 0.15, and 0.20. The x-
ray scattering from homopolymer II shows two orders of
quasi-Bragg peaks which are not resolution limited, lead-
ing to a finite-size L ’ 1 �m of the smectic domains.
Away from the center of the peaks, a power-law behavior
�q� qn�

�2
�n is observed [15] that can be described by
the scaling law �n=n2 � � � 0:10� 0:04.

Typical x-ray profiles for elastomer II are shown in
Fig. 2(a) for different orders at x � 0:1. The systematic
increase of the exponent �n of the algebraically decaying
tails follows �n=n2 � 0:15� 0:04. The FWHM of the
quasi-Bragg peaks is not resolution limited and the cen-
tral part is well described by a Gaussian. For the first-
order peak this leads to a finite size along the layer
normal of L ’ 1:6 �m. Rather surprisingly, we find that
the FWHM systematically increases with the order of the
diffraction peak. The same behavior is observed at higher
crosslink densities. The results, summarized in Tables I
and II, indicate a systematic increase of the peak width
along qz as well as along qx (mosaic distribution), both
with increasing crosslink density and with the order of
the reflection. The variation with crosslink density is
illustrated in Fig. 2(b). For x � 0:15, the algebraic decay
of the positional correlations is still preserved with � ’
0:15, but is masked by a substantial broadening of the
peak along qz (see Table II). The asymmetry seen is
probably an artifact of the measurement. The central
part of the peak can still be well approximated by a
Gaussian [see Fig. 3(a)], and the FWHM indicates smectic
domains as small as L ’ 400 nm. Similar to the case x �
0:1, the FWHM increases with diffraction order. Finally
at x � 0:20 only a first-order diffraction peak can be
185702-2
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FIG. 3. First harmonic line shape of elastomer II for
(a) crosslink density x � 0:15, and (b) x � 0:2. The dashed
line is the best fit to a Gaussian, the full line to a Lorentzian.
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TABLE I. Summary of linewidth results for elastomer I.

Concentration Order d �qz Mosaic
crosslinks x n (nm) (10�3 nm�1) (deg)

0 1 2.78 8.8 1.7
0.05 1 2.88 2.1 0.9
0.05 2 2.4 1.3
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observed, which is strongly broadened along both qz and
qx. The intensity profile �qz cannot be described by a
Gaussian anymore, but fits to a Lorentzian centered at
q0 � 2:16 nm�1 with a correlation length � ’ 50 nm [see
Fig. 3(b)]. We conclude that for crosslink concentrations
between 15% and 20%, a crossover takes place from finite
domain sizes in which the positional correlations decay
algebraically, to short-range positional correlations char-
acteristic of a disordered phase. The observed behavior of
all samples is summarized in Fig. 4.

Let us discuss the theoretical context of the results
observed. The elastic free energy of a smectic system is
described by the layer-displacement field u�r� � uz�r?; z�
along the layer normal z. The mean-squared fluctuations
are given in the harmonic approximation by

hu2�q�i �
kBT

Bq2z 
 Kq4?
; (1)

where the elastic moduli K and B describe bending and
compression of the layers, respectively, and kBT is the
thermal energy. A conventional smectic with liquid layers
has no resistance to shear, and a term �r?u�r��

2 is not
allowed in the deformation energy. Only higher-order
contributions ���?u�r��2, corresponding to layer curva-
ture, are energetically penalized. As a result, in the long-
wavelength limit q ! 0, fluctuation modes have a much
higher amplitude than in a three-dimensional solid, for
which the analogous mean-square average is proportional
to kBT=�Cq

2�. However, in a smectic elastomer, the under-
lying elastic network couples to the layer displacements
and the smectic degeneracy with respect to uniform layer
rotations is lost. Though the resulting expression for the
free energy as a function of layer displacements is rather
TABLE II. Summary of linewidth results for elastomer II.

Concentration Order d �qz Mosaic
crosslinks x n (nm) (10�3 nm�1) (deg)

0 1 2.86 9.3 1.6
0 2 12 3.3
0.1 1 2.91 5.5 2.6
0.1 2 10.3 2.6
0.1 3 23 3.3
0.15 1 2.92 24 7.5
0.15 2 35 8.1
0.2 1 2.92 51 15
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complicated, the essential physics can be seen from the
dispersion law for the elastomer phonon modes [12]:

hu2�q�i? �
kBT

B�q2z 
 2C�
5q

2
? 
 2Ceff

5 �q4z=q
2
?�

; (2)

where B�and C�
5 are renormalized bulk compression and

shear moduli, respectively. The elastic modes now feature
a solidlike elastic energy proportional to an overall
squared power q2. This can lead to reestablishment of
true long-range order, even though the translational order
is still 1D, like in a noncrosslinked smectic polymer [9].

So far, the crosslinks—pinning the smectic layers in a
number of points—were not supposed to alter the smectic
density. However, the crosslinks are also expected to
disturb the layer structure itself, which effect will be-
come more important with increasing concentration. A
preferential reduction of the smectic density around a
crosslink can be modeled by a local random field that
adjusts the phase of the smectic density wave [16]. A full
theory of such a system—still to be developed—might
need a correlation function that is a product of two
independent terms describing size and strain effects, re-
spectively. Such possibilities have been discussed for
various defect situations by Krivoglaz [17]. This problem
0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

0.01

0.02

0.03

0.04

exponential
decay

x

∆q
z

(n
m

-1
)

FIG. 4. Summary of the peak width �qz as a function of the
crosslink density; squares: first harmonic, triangles: second
harmonic, circle: third harmonic.
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is also well known in metal physics, were this type of
decoupling is used to describe strain-induced line shape
broadening increasing with q and thus with the order of
the reflection [18].

Let us analyze our findings (Fig. 4) in more detail in
the context sketched. At small crosslink concentration
x ’ 0:05, the finite size of the smectic domains is 2–4
times larger than in the corresponding homopolymer.
Evidently the elastomer network enhances the stability
of the layered structure in agreement with the predictions
of layer pinning theory, Eq. (2). With increasing concen-
tration of crosslinks, the disorder gradually takes over as
indicated by broadening of the x-ray peaks both along
and perpendicular to the layer normal. For the higher
harmonics, the width of the peaks along qz increase
quadratically with n; the observed broadening of the
mosaic distribution is somewhat more complicated (com-
pare Table II for x � 0:1 and various n). The observed
broadening with different orders of diffraction is attrib-
uted to strain due to the layer displacements around the
crosslinks (or other types of defects generated by the
crosslinks) that are not small anymore in comparison
with the layer spacing. The observed behavior also resem-
bles that predicted for the elastic field of distant disloca-
tions or other topological defects [19].

At a crosslink concentration x � 0:15, the finite size of
the smectic domains has diminished to a few hundred
nm, but within the domains the algebraic decay of the
smectic layer correlations is still preserved. At higher
crosslink densities, the finite-size domains give way to
extended short-range correlations. The structure factor is
now given by an anisotropic Lorentzian characteristic of a
positionally disordered nematiclike phase. Though this
behavior is consistent with the general predictions for
randomly quenched disorder, it is remarkable that the
algebraic decay survives within the domains up to large
crosslink densities. The analogy might fail because in
smectic elastomers, the crosslinks are not rigidly ‘‘fro-
zen’’ defects, but consist of flexible chains embedded in
the slowly fluctuating elastomer gel. Clearly this makes
the situation very different from the type of quenched
disorder introduced in aerogel or aerosil networks. We
speculate that starting from a certain concentration of
crosslinks, defects of higher strength are generated in a
large amount, which causes large displacements of the
layers, qu � 1. The elastic field of such defects, for
example, dislocation loops, will suppress the Bragg peaks
and lead to diffuse scattering with a Lorentzian shape.

In conclusion, we have used high-resolution x-ray scat-
tering to determine the positional correlations in smectic
elastomers with an increasing number of crosslinks. At
small crosslink density, the elastomer network enhances
the stability of the layer structure against fluctuations. Up
to a relatively large concentration of about 15% cross-
links, the algebraic decay of the positional correlations
185702-4
survives in domains of decreasing size. Only for a larger
density of crosslinks is the smectic ordering destroyed by
the random field of the crosslinks and replaced by ex-
tended short-range correlations.
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